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ABSTRACT: Polymorphism in molecular crystals influences their properties
and performance. Crystal structure prediction (CSP) can help explore the
crystal structure landscape and discover potentially stable polymorphs
computationally. We present a new version of the Genarris open-source
code, which generates random molecular crystal structures in all space groups
and applies physical constraints on intermolecular distances. The main new
feature in Genarris 3.0 is the “Rigid Press” algorithm, which uses a regularized
hard-sphere potential to compress the unit cell and achieve a maximally close-
packed structure based on purely geometric considerations without
performing any energy evaluations. In addition, Genarris 3.0 is interfaced
with machine-learned interatomic potentials (MLIPs) to accelerate the
exploration of the potential energy landscape. We present a new clustering and down-selection workflow that employs the MACE-
OFF23(L) MLIPs to perform geometry optimization and energy ranking in the early stages. We use Genarris 3.0 to successfully
predict the structure of six targets: aspirin, Target I and Target XXII from previous CSP blind tests, and the energetic materials
HMX, CL-20, and DNI. We further analyze the performance of MACE-OFF23(L) compared to dispersion-inclusive density
functional theory (DFT) for geometry relaxation and energy ranking. We find significant variability in the performance of MACE-
OFF23(L) across chemically diverse targets with particularly poor performance for energetic materials, which is mitigated by our
clustering and down-selection procedure. Genarris 3.0 can thus be used effectively to perform CSP and to generate molecular crystal
data sets for training ML models.

■ INTRODUCTION
Molecular crystals are used for diverse applications including
organic semiconductor devices,1 energetic materials (EMs),2,3

pharmaceuticals,4 and agricultural chemicals.5 Because molec-
ular crystals are held together by weak van der Waals
interactions, they are prone to polymorphism,6 which is the
ability of the same compound to crystallize into multiple
crystal structures. Polymorphism has a far-reaching impact
because different polymorphs can have markedly different
physical, chemical, and mechanical properties. For example,
crystal structure can influence the bioavailability and stability
of pharmaceuticals,7,8 the sensitivity, detonation velocity, and
safety of energetic materials,3,9−11 and the charge carrier
mobility of organic semiconductors.12,13 Consequently, a
comprehensive understanding of crystal structure landscapes
and screening for polymorphs with desired properties is
essential for the development of products based on molecular
crystals. It can be time-consuming to perform exhaustive
polymorph screening because minor variations in crystalliza-
tion conditions can alter the resulting crystal structure and
some structures are difficult to crystallize.14−17 Computer
simulations can provide guidance as to the possible presence of
thermodynamically stable polymorphs, which have not yet
been experimentally obtained. Indeed, computational crystal
structure prediction (CSP) has become an integral part of the

pharmaceutical development pipeline.18−21 Moreover, com-
puter simulations can further predict the properties of putative
crystal structures.22−29

Computational CSP aims to predict all plausible polymorphs
of a given compound. Advancements in CSP have been tracked
through a series of blind tests organized by the Cambridge
Crystallographic Data Centre (CCDC).30−37 The CSP blind
tests have both benchmarked and driven methodological
improvements. In addition, they have highlighted the
challenges faced by state-of-the-art CSP methods. Over the
years, as CSP capabilities have evolved, the complexity of the
target systems has increased. The field has progressed from
relatively rigid small molecules to more flexible, larger
molecules, and from single-component to multicomponent
crystals. As CSP targets become more complex, the
configuration space that needs to be explored grows
exponentially.38−40 This may require evaluating the relative
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stability of millions of putative structures. The difficulty is
compounded by the fact that the energy differences between
polymorphs are usually only a few kJ/mol,41,42 requiring high
accuracy. The necessary accuracy can be achieved by
dispersion-inclusive density functional theory (DFT),43−56

albeit at a high computational cost. Some intertwined
challenges the CSP community is still grappling with are
predicting stability at finite temperatures,53,57−59 the so-called
overprediction problem, where structures corresponding to
distinct local minima at 0 K correspond to the same (possibly
disordered) structure at finite temperatures,60 and crystallo-
graphic disorder, caused by multiple molecular conformations,
orientations, or atomic positions within the unit cell.36

Addressing these challenges would require going beyond
lattice energy evaluations using dispersion-inclusive DFT at 0
K. This calls for the development of ranking methods that are
both cost-effective and accurate for optimizing and evaluating
the relative lattice energies of millions of candidate crystal
structures.

Machine learned interatomic potentials (MLIPs) are
considered as a promising route for achieving comparable
accuracy to DFT at a significantly lower computational
cost.61−68 To this end, MLIPs must be trained on large DFT
data sets. Most of the available materials data sets are either of
inorganic crystals with relatively small unit cells62,69−73 or of
isolated small organic molecules.74−81 MLIPs have limited
transferability outside of their training domains.82 The lag in
the development of MLIPs for molecular crystals may
therefore be attributed to the dearth of open data sets for
molecular crystals. In order to perform well for molecular
crystals, MLIPs must adequately capture intermolecular
dispersion interactions. An alternative approach to training
directly on molecular crystals is training on molecular data sets
that include intramolecular dispersion interactions and/or
intermolecular interactions between clusters of molecules. The
resulting MLIPs, which capture short-range interactions, are
then augmented with dispersion corrections, similar to DFT
functionals.67,83−86

The 7th CSP blind test was conducted in two phases, which
ran from October 2020 to June 2022. The structure generation
phase tested the ability of participants to generate the
experimentally observed crystal structure starting from a
molecular “stick diagram”.36 The ranking phase tested the
ability of participants to relax and rank lists of structures
provided by the CCDC.37 Our team (Group 16) used
Genarris87,88 for crystal structure generation and system-
specific AIMNet267,89 MLIPs for geometry relaxation and
energy ranking. Random or quasi-random crystal structure
generation methods are frequently employed in CSP work-
flows to explore the potential energy surfaces (PES) of
complex molecules with an unbiased sampling of crystal
packing.90−93 Genarris generates random structures in all space
groups compatible with the molecular symmetry and the
requested number of molecules per unit cell (Z), including
molecules occupying special Wyckoff positions. The target unit
cell volume is determined by a machine-learned model94 and
physical constraints are imposed on the intermolecular
distances. The version of Genarris that was used in the 7th

CSP blind test employed a preliminary implementation of the
Rigid Press algorithm, described below, which uses a
regularized hard-sphere potential to achieve close packing of
molecules in the unit cell. In the structure generation phase,
system-specific AIMNet2 potentials were used to relax and

rank millions of structures generated by Genarris. To the best
of our knowledge, this was the earliest use (in 2020−2021) of
MLIPs for molecular crystal structure prediction. We
successfully generated four out of the six possible crystal
structures for the targets we attempted, resulting in a success
rate of 67%, which was the highest among academic teams and
third overall.36 In the ranking phase, our system-specific
AIMNet2 potentials attained accuracy on par with dispersion-
inclusive DFT methods at a fraction of the computational cost,
and exceeded the performance of the MLIPs used by two other
teams (Groups 12 and 15).37 A detailed description of the
system-specific AIMNet2 potentials and analysis of our results
from the 7th CSP blind test is provided elsewhere.89 Since the
conclusion of the 7th CSP blind test, others have reported
incorporating MLIPs for structure optimization and energy
ranking in CSP workflows.95−97 Generative models98,99 and
large language models (LLMs)100,101 are emerging as
promising future approaches to structure generation.

Here, we introduce Genarris 3.0, the latest version of our
open-source Python package for molecular crystal structure
generation. We provide a detailed description of the Rigid
Press algorithm featured in this version. Genarris 3.0 is
interfaced with a variety of energy evaluation and relaxation
methods via the Atomic Simulation Environment (ASE),102

providing the user maximal flexibility for choosing their
preferred methods. Here, the MACE-OFF61 MLIPs are
employed to accelerate energy evaluations and geometry
relaxations. A new workflow for down-selection is presented
to gradually reduce the number of candidate structures
evaluated with increasingly computationally expensive and
more accurate methods. The modular and extensible design of
Genarris facilitates the integration of advanced methods for
structure generation, optimization, and energy evaluations, as
well as the implementation of user-defined workflows, thereby
enhancing its capabilities in CSP.

To demonstrate the performance of Genarris 3.0, we have
selected six diverse targets, shown in Figure 1. Aspirin (2-
acetoxybenzoic acid) is a representative example of a hydrogen
bonded crystal. It has two polymorphs, Form I and Form II
(CSD reference codes ACSALA and ACSALA17).103,104 Both

Figure 1. 2D molecular diagrams, common names, and CSD
reference codes of the six CSP targets used here.
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forms have four molecules per unit cell (Z = 4) and crystallize
in the monoclinic space group P21/c (No. 14). Target I from
the first CSP blind test (3,4-cyclobutylfuran)30 has no strong
intermolecular interactions. It has two known polymorphs: a
stable form that crystallizes in the monoclinic space group P21/
c (No. 14) with Z = 4 and a metastable form that crystallizes in
the orthorhombic space group Pbca (No. 61) with Z = 8 (CSD
reference codes XULDUD01 and XULDUD). Here, we focus
on the structure with Z = 8, because its higher complexity and
larger unit cell size provide a stringent test case for
demonstrating the capability of our method to generate crystal
structures with higher molecular packing complexity. Target
XXII (tricyano-1,4-dithiino[c]-isothiazole) from the sixth CSP
blind test35 has unusual intermolecular interactions involving
C, S, and N atoms. It crystallizes in the monoclinic space group
P21/n (No. 14) with Z = 4 (CSD reference code NACJAF).

In addition, we have selected three energetic materials
(EMs). EMs are characterized by exceptionally dense crystal
structures and strong intermolecular interactions between
nitrogen-containing moieties.54 Given that experiments on
EMs are inherently risky, CSP represents a valuable approach
for safely and effectively exploring their landscapes.10,11,105 CL-
20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazatetracyclo-
[5.5.0.03,11.05,9]dodecane) has several known poly-
morphs.106−108 Here, we focus on the most stable form, ε-
CL-20 (CSD reference code PUBMUU02), which possesses
the highest density, greatest detonation velocity, and superior
impact stability.109 The ε-CL-20 form crystallizes in the
monoclinic space group P21/n (No. 14) with four molecules
per unit cell (Z = 4). HMX (1,3,5,7-tetranitro-1,3,5,7-
tetrazocane) is highly polymorphic and exhibits multiple
conformers across its four known forms.11,110−113 Here, we
focus on δ-HMX (CSD reference code OCHTET03), which
crystallizes in the hexagonal space group P61 (No. 169) to
demonstrate structure generation with six molecules per unit
cell (Z = 6). DNI (2,4-dinitroimidazole, CSD reference code
TEVHEH01) has excellent detonation properties, lower
sensitivity, and higher thermal stability compared to CL-20
and HMX.114 It crystallizes in the orthorhombic space group
Pbca (No. 61) with eight molecules per unit cell (Z = 8).115

The experimental structures of all six targets are successfully
generated by Genarris 3.0 and retained through the steps of the
clustering and down-selection workflow. In the final stage of
ranking with dispersion-inclusive DFT, the experimentally
observed structures of all targets are ranked as the global
minimum or the second lowest-energy structure. We find that
MACE-OFF23(L) delivers variable performance for geometry
relaxation and energy ranking across chemically diverse
compounds. The performance for the energetic materials and
Target XXII, whose chemistry is not well-represented in the
training data, is worse than for aspirin and Target I. The new
clustering and down-selection workflow implemented in
Genarris 3.0 is able to mitigate the inconsistent performance
of MACE-OFF23(L). This makes Genarris 3.0 a versatile,
robust, and efficient code for CSP116 and for generating
molecular crystal data sets117 for MLIPs training.

■ METHODS
Workflow Overview. Figure 2a shows an overview of the

CSP workflow used in this study. Genarris 3.0 starts from a
molecular structure provided by the user. Genarris 3.0 does not
perform conformational sampling. For flexible molecules,
Genarris 3.0 can be used with an ensemble of conformers.

This has been demonstrated in the 7th CSP blind test. Results
for the large flexible substituted acene, Target XXVII, and
Target XXXI are reported in detail in ref 89. Here, we used the
molecular conformation extracted from the CSD entry, relaxed
using dispersion-inclusive DFT. Genarris identifies all space
groups compatible with the requested number of molecules per
unit cell (Z) and the molecular point group symmetry,
including space groups with molecules occupying special
Wyckoff positions.88 Currently, Genarris 3.0 generates
structures only with one molecule in the asymmetric unit
(Z′ = 1). A number of structures specified by the user is
generated in each compatible space group.

Structure generation starts by generating a unit cell with a
volume within a normal distribution around a target value.
Previously, Genarris 2.0 employed the target volume estimated
by the PyMoVE machine-learned model.94 When using the
Rigid Press algorithm (described below), the initial volume
estimate is scaled by a factor of 1.5 to facilitate molecule
placement. Molecules are placed in the unit cell as described in
ref 88. The first molecule is randomly placed and the
remaining molecules are generated based on space group
symmetries. If a molecule occupies a special Wyckoff position,
it is aligned with the site symmetry. The generated structure is
then checked to ensure that the interatomic distance, dij,
between atoms i and j from different molecules is not less than
sr × (rivdW + rjvdW), where ri/jvdW are the atomic van der Waals
radii and sr is a user-defined fraction. Here, we set sr = 0.95 to
provide sufficient distance for subsequent Rigid Press
optimization. Special intermolecular distance settings are
applied to strong hydrogen bonds.88 Structures that fail the
proximity check are discarded. Structure generation continues
until the requested number of structures is reached. In this
work, 4000 crystal structures were generated in each
compatible space group, forming the so-called “raw pool” of
structures. All structures in the raw pool are initially optimized
with Rigid Press. Subsequently, duplicate removal is performed
within each space group by calculating the similarity via the

Figure 2. Schematic illustration of the workflow of Genarris 3.0: (a)
the workflow of structure generation and (b) the down-selection
workflow used here.
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Python Materials Genomics (PYMATGEN)118 STRUCTUREMATCH-

ER class, using 0.5 fractional length tolerance, 0.5 site tolerance,
and 10° angle tolerance. These loose tolerances are used to
efficiently discard many similar configurations, significantly
reducing redundancy and computational cost in subsequent
screening steps.

Next, a series of user-defined screening steps can be
executed using increasingly more accurate and computationally
expensive methods to gradually reduce the number of
structures in the pool. The down-selection workflow may be
varied depending on the user’s objective. For example, a
workflow intended for generating data to train MLIPs117 may
differ from a CSP workflow.116 The CSP workflow used here is
shown in Figure 2b. The sequence of clustering and selection
steps is designed to balance considerations of structural
diversity and energetic stability.

For the structures remaining after Rigid Press optimization
and duplicate removal, single-point energy (SPE) calculations
are performed using MACE-OFF23(L). Afterward, affinity
propagation (AP) clustering119 is performed with the target
number of clusters set to 10% of the current structure pool.
Genarris automatically adjusts the preference hyperparameter
within the AP algorithm to achieve the desired number of
clusters.88 The lowest-energy structure from each cluster is
selected. The selected structures are fully relaxed with MACE-
OFF23(L), followed by an additional round of duplicate
removal. Subsequently, AP clustering is performed again to
produce 100 clusters. Up to 5 most stable structures within a
10 kJ/mol energy window are selected from each cluster. For
the remaining structures, SPE evaluations are performed using
dispersion-inclusive DFT. Then, AP clustering is performed to
produce 100 clusters again, and all structures within a 10 kJ/
mol energy window are selected from each cluster. We note
that the number of clusters and the energy thresholds for
selection in each step are a user-defined choice. Finally, the
remaining structures are fully relaxed using dispersion-inclusive
DFT and another round of duplicate removal is performed.
This comprises the final pool of diverse and low-energy
structures.

Genarris 3.0 incorporates significant code improvements.
Enhanced modularity is achieved through Python’s Abstract
Base Class (ABC) module. This modular design simplifies the
incorporation of new algorithms and optimization methods
without requiring extensive modifications to the existing code.
Moreover, it enables Genarris to support any MLIP model that
provides a Python calculator interface for energy evaluation,
thereby increasing both flexibility and usability. For example, in
addition to MACE-OFF, Genarris 3.0 has been used with the
AIMNet289 and Universal Models for Atoms (UMA)116

MLIPs. Additionally, Genarris 3.0 features optimized multi-
processing capabilities, robust support for saving task
checkpoints and restart functionality, enhanced process logging
for improved monitoring and troubleshooting, and compati-
bility with GPU-accelerated MLIPs. These developments
substantially improve the computational efficiency and
performance during the structure generation and ranking tasks.

Rigid Press. On the one hand, it may take a very large
number of attempts to randomly generate close-packed
molecular crystal structures while avoiding unphysical
intermolecular contacts, which may lead to significant time
spent on generating, checking, and discarding structures. On
the other hand, increasing the target unit cell volume facilitates
molecule placement, but significantly increases the time spent

on relaxation of loosely packed molecular crystal structures. To
address this challenge, we have developed the “Rigid Press”
algorithm. Rigid Press uses a regularized hard-sphere potential
to compress the unit cell based on purely geometric
considerations without performing any energy evaluations.
The workflow of Rigid Press is illustrated in Figure 3a. First, all

the molecule pairs that are within the search radius to be
considered are identified (Figure 3b). Then, an objective
function formulated to minimize the unit cell volume while
maintaining physical intermolecular distances is evaluated
(Figure 3c). The inherently nondifferentiable hard-sphere
interaction model is transformed into a smooth, differentiable
function suitable for standard numerical optimization algo-
rithms. The algorithm keeps the internal molecular geometry
frozen (hence the name “Rigid Press”) as it simultaneously
optimizes the molecular positions and orientations and the
crystal lattice vectors to minimize the unit cell volume, while
preserving the space group symmetries. Figure 3d shows
representative Rigid Press optimization trajectories of aspirin
Form I and ε-CL-20 (Rigid Press optimization trajectories for
all other CSP targets are shown in the SI). The trajectories are
characterized by a rapid initial volume reduction, indicating an
effective compaction process from the initial structure
(generated with an expanded volume) to the maximally
close-packed final structure. The computational cost of Rigid
Press optimization is lower by up to 2 orders of magnitude
than relaxation using MLIPs. In addition, starting MLIP
relaxation from a structure preoptimized with Rigid Press

Figure 3. The Rigid Press algorithm: (a) overall workflow; (b)
identification of interacting molecules; (c) regularized hard-sphere
interaction model; and (d) representative optimization trajectories for
aspirin Form I and ε-CL-20. The ratio of the unit cell volume, V, to
the initial volume, V0, is plotted as a function of the number of
optimization steps. The initial and final structures are also shown.
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significantly reduces the number of relaxation steps required
and thus the computational cost of downstream optimization,
as shown in the SI. In a CSP workflow involving MLIP
relaxations of thousands116 or even millions89 of putative
structures this can amount to a dramatic reduction of the time
to solution.

Within Rigid Press, a molecular crystal is represented by a
state vector s, constructed to preserve the crystal’s space group
symmetry during optimization. The state vector comprises
independent lattice vectors, L, according to the crystal system,
the position of the asymmetric unit’s center of geometry, rcog,
and the orientation of the asymmetric unit represented by
Euler angles, θ. The objective function, F(s), optimized by the
Rigid Press algorithm is defined as

= +F V Ps s s( ) ( ) ( )contact (1)

where V(s) denotes the unit cell volume and Pcontact(s) is the
contact penalty function, which is calculated by summing over
atomic penalties from all interacting molecular pairs within a
specified cutoff distance:

=P d( , )
A B i A j B

ij ijcontact
( , )

pair
(2)

Here, the set represents all molecular pairs that are
sufficiently close for their interactions to be considered, and dij
= ∥riA(s) − rjB(s)∥ is the distance between atoms i and j
belonging to different molecules A and B. σij is the hard-sphere
diameter for the atom pair (i, j), defined as a fraction (sr) of the
sum of their van der Waals radii. Here, the default value of sr is
0.85, with specialized sr values applied for hydrogen bonds.
These sr values were determined by statistical analyses of
experimental structures in CSD.88 To compute eq 2, all the
molecule pairs within the interaction distance D need to be
identified. A molecule can interact with other molecules in the
unit cell, any of their periodic images or even its own periodic
image. As shown in Figure 3b, the search can be limited to all
the cells that are at an interacting distance D from the central
cell. This is precomputed for a given state to reduce
computational cost.

The pairwise interaction penalty ϕpair(d, σ) is defined in a
piecewise manner to ensure differentiability:

= · < <d

d

w
D d
d

d D

d D

( , )

if

if

0 if

pair

l

m
ooooooo

n
ooooooo (3)

The maximum interaction distance, D, is defined as D = lmol +
2 × max(σij), where lmol is the diameter of the smallest sphere
enclosing the molecule, defined as twice the maximum distance
from the molecular center of geometry to any atom, and
max(σij) is the maximum interaction radius among all atom
pairs. This is illustrated in Figure 3b. w = k/Natoms

2 is a scaling
factor that normalizes the contact penalty by the square of the
number of atoms per molecule (Natoms) to ensure appropriate
scaling, irrespective of molecular size. The constant k controls
the relative importance of the contact penalty in the objective
function in eq 1. The default value is k = 0.1, which was
determined empirically to provide a balanced contribution
from interaction penalties. Users may adjust this value as
needed based on specific use cases.

The final numerical optimization employs the The Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm120 implemented
in the SCIPY OPTIMIZE class.121 Space group symmetries are
preserved by reconstructing the full crystal coordinates from
the optimized state vector, s, after each optimization step.
Specifically, symmetry operations corresponding to the space
group are applied to the optimized asymmetric unit’s position
and orientation parameters, represented within the state vector
s, to generate the complete crystal structure, thus enforcing
symmetry constraints. The iterative optimization continues
until reaching predefined convergence criteria, with a default
tolerance of 0.01 for the gradient norm, or a maximum
iteration limit of 5000. Both criteria can be customized by the
user. Upon successful completion, the crystal structure is
updated to reflect the optimized close-packed molecular
arrangement. We have additionally implemented a faster
version of the Rigid Press algorithm without symmetry
constraints in C, which is interfaced with Python through
Simplified Wrapper and Interface Generator (SWIG). Users
may select the appropriate version based on their specific
requirements.

Computational Details. We have interfaced Genarris 3.0
with various methods for geometry optimization and energy
evaluation via the Atomic Simulation Environment (ASE).102

All dispersion-inclusive DFT calculations were performed
using the FHI-aims all-electron electronic structure
code122−124 (version 240507). For each target, the single
molecule geometry was extracted from the experimental crystal
structure in CSD. The single molecule geometry was then
relaxed using the PBE0125 hybrid functional, which is based on
the Perdew−Burke−Ernzerhof (PBE)126 generalized gradient
approximation, combined with the many-body dispersion
(MBD) method.127−129 For crystal structures, single-point
energy (SPE) evaluations with PBE+MBD were performed
using the Tier 1 basis sets of FHI-aims and light numerical
settings. Unit cell relaxations of the final structures using PBE
+MBD were performed with the Tier 2 basis sets of FHI-aims
and tight numerical settings. A 3 × 3 × 3 k-point grid was used
to sample the Brillouin zone.

The MLIP employed here is the MACE-OFF61 pretrained
transferable organic force field (OFF). MACE-OFF has three
variants trained on the same SPICE 1.0 data set:81 small
(MACE-OFF23(S)), medium (MACE-OFF23(M)), and large
(MACE-OFF23(L)), which differ mainly in the number of
hyperparameters. Additionally, the large (L) variant employs
an extended cutoff radius of 5 Å, utilizes more chemical
channels (k = 192), and incorporates a higher maximum
equivariant messages (max L = 2). These enhancements enable
the MACE-OFF23(L) model to better capture complex many-
body effects and long-range interactions to achieve superior
accuracy. However, this increased accuracy comes with a
higher computational cost. Here, we selected MACE-OFF23-
(L) because benchmark tests on the X23b data set130 have
indicated that it provides predictions comparable in accuracy
to dispersion-inclusive DFT.

All geometry relaxations with MLIPs and DFT were
performed using the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm implemented in ASE, with a force
convergence criterion of 0.01 eV/Å. We also employed the
ASE FRECHETCELLFILTER to simultaneously adjust atom
positions and the unit cell, along with the ASE constraint
FIXSYMMETRY to preserve space group symmetry.
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To assess the similarity between the predicted and
experimentally observed crystal structures, we used the
COMPACK molecular overlay method,131 as implemented in
the Crystal Packing Similarity feature of the CSD Python
API.132 A crystal structure is represented by a cluster of N
molecules comprised of a central reference molecule and (N-1)
nearest-neighbor molecules. The root mean squared deviation
(RMSD) between two molecular clusters is calculated based
on the molecules that match within the specified tolerances.
Here, we calculated the RMSD in the atomic positions for
clusters of 30 molecules, labeled as RMSD30. To this end, the
number of matching molecules between shells of 30 molecules
is extracted from the two crystal structures being compared,
within 35% distance and 35° angle tolerances, excluding
hydrogen atoms. This is the same comparison metric that was
used in the 7th CSP blind test.36,37

■ RESULTS AND DISCUSSION
CSP Results. Table 1 summarizes the number of matches

to the experimental structure out of the total number of
generated structures in the pool at each stage of the CSP
workflow. Figures 4 and 5 present the corresponding
distributions of unit cell volume and space groups obtained
at each stage. Similar figures for all other targets, as well as
lattice parameter distributions, are provided in the SI.

Initially, structures are generated across all compatible space
groups for each target, as indicated by the uniform space group
distributions in Figures 4 and 5. For example, aspirin structures
with Z = 4 were generated across 26 compatible space groups
and DNI structures with Z = 8 were generated across 63
compatible space groups (see SI). Because the initial
generation is performed with an increased target volume, the
unit cell volume histograms are significantly overestimated
compared to the experimental values at this stage. For most
targets, no matches are found after initial generation. For
Target XXII, one match is found out of 104,000 structures. For
δ-HMX, 268 matches are found out of 52,573 generated
structures. This higher match rate is likely because the highly
constrained space group symmetry (P61, No. 169) limits the
degrees of freedom for the molecular positions and orientation,
which reduces the configuration space to be searched and
increases the likelihood of generating the correct structure.

After optimization with Rigid Press, the unit cell volume
histograms in Figures 4 and 5 are closer to the experimental
values (see also SI). It is interesting to note that for aspirin,
Target XXII, and Target I the unit cell volumes are somewhat
underestimated after Rigid Press, whereas for the very dense
energetic materials the unit cell volumes after Rigid Press are
very close to the experimental values for δ-HMX and DNI and

still slightly overestimated for ε-CL-20. The space group
histograms are unchanged because Rigid Press preserves the
space group symmetry. Importantly, after Rigid Press, matches
are found for all targets. For most targets, only a handful of
matches are found out of ∼105 generated structures. For
Target I, 22 matches are found out of 248,000 structures. The
higher number of matches may be attributed to the molecule’s
rigidity and the common Pbca (No. 61) space group, which
facilitates good packing. For δ-HMX, the number of matches
increases to 1430. There is a clear distinction between
structures that are difficult to generate, and are generated
very rarely, such as DNI with a single match out of 232,025
structures, compared to structures that are easy to generate and
are generated frequently, such as δ-HMX. A comparison for ε-
CL-20 between workflows started from the same initial pool
with and without Rigid Press is provided in the SI,
demonstrating that a match to the experimental structure can
only be found with Rigid Press.

At this point, duplicate removal drastically reduces the
number of structures in the pool without significantly changing
the volume distributions. For Target XXII, ε-CL-20 and DNI,
the reduction is by a factor of 8−10. For aspirin, the reduction
is by a smaller factor of 5. The greatest reductions are for
Target I and δ-HMX by a factor of 19−20. We consider a large
number of duplicates as an indication that the configuration
space is exhaustively sampled. To reduce the number of
duplicates, the user can reduce the number of structures
generated in each space group. After this step, the space group
distributions are no longer uniform because more duplicates
are generated in some space groups than in others. Certain
space groups, such as P2/m (No. 10) and P222 (No. 16),
include more special Wyckoff sites, limiting the number of
available general positions. As a result, when Genarris attempts
to place molecules on the general Wyckoff position of these
space groups fewer unique arrangements are possible. Addi-
tionally, tetragonal and orthorhombic crystal systems with
higher-symmetry space groups (e.g., Nos. 75−81) impose
stricter symmetry constraints, leading to fewer unique crystal
packing arrangements. Symmetry elements such as mirror
planes and inversion centers greatly increase the multiplicity of
equivalent positions and thereby increase the number of
duplicates generated. For instance, space group Cm (No. 8) is
C-centered, causing each initial placement to generate multiple
symmetry-equivalent structures. In all cases, a large number of
structures are retained in the space group of the experimental
structure(s). After duplicate removal only one match to the
experimental structure remains for Target XXII, ε-CL-20, and
DNI. For aspirin, one match remains for each polymorph. For

Table 1. Summary of the number of matches to the experimental structure out of the total number of structures in the pool at
each step of the Genarris 3.0 crystal structure prediction workflow for all six targets. For aspirin, matches to both polymorphs
are counted.

CSP workflow aspirin target XXII target I δ-HMX ε-CL-20 DNI

initial generation 0/100,004 1/104,000 0/248,000 268/52,573 0/92,000 0/232,025
Rigid Press 4/100,004 4/104,000 22/248,000 1430/52,573 6/92,000 1/232,025
duplicate removal 2/18,528 1/11,916 2/12,356 3/2,767 1/11,860 1/24,065
AP clustering @MACE-OFF23 SPE 2/1817 1/1119 1/1152 3/270 1/1219 1/2391
relaxation @MACE-OFF23 & duplicate removal 2/1567 1/1031 1/914 1/212 1/1118 1/1759
AP clustering @MACE-OFF23 2/218 1/184 1/193 1/122 1/310 1/197
AP clustering @PBE+MBD SPE 2/128 1/108 1/98 1/103 1/143 1/124
relaxation @PBE+MBD & duplicate removal 2/127 1/106 1/89 1/89 1/137 1/116
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Target I and δ-HMX, two and three matches are left,
respectively.

After AP clustering and selection based on MACE-
OFF23(L) single-point energies, the number of structures is
reduced to 10% while retaining the matches to experiment for
all targets. After full unit cell relaxation with MACE-

Figure 4. Distributions of (I) unit cell volume and (II) space groups,
obtained at each step of the Genarris 3.0 workflow for aspirin with Z =
4. The experimental unit cell volume of Form I is indicated by a solid
vertical red line and Form II is indicated by a dashed vertical orange
line. The experimental space group is indicated by a red arrow.

Figure 5. Distributions of (I) unit cell volume and (II) space groups,
obtained at each step of the Genarris 3.0 workflow for ε-CL-20 with Z
= 4. The experimental unit cell volume is indicated by a vertical red
line, and the experimental space group is indicated by a red arrow.
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OFF23(L), the unit cell volume histograms in Figures 4 and 5
shift to higher values. Duplicate removal further reduces the
number of structures only slightly. This is an indication that
the structures remaining after the first clustering and selection
step are already unique and structurally diverse. In the two
subsequent clustering and selection steps, the number of
remaining structures varies between targets, depending on the
number of structures within the 10 kJ/mol energy window (see
further discussion below). With each clustering and down-
selection step, the volume distributions become narrower,
while retaining a large number of structures in the
experimental space groups.

Figure 6 shows the final potential energy landscapes
obtained with PBE+MBD for all six targets. For all targets,
except for Target XXII, the experimentally observed forms are
ranked as the global minimum. For Target XXII, it has been
shown previously that the experimental structure is ranked as
the global minimum only with PBE0+MBD.133 For aspirin,
Form II is predicted to be more stable than Form I by 0.69 kJ/
mol. Experimental observations suggest that Form I is more
stable than Form II at 300 K.134−136 Previous computational
studies using dispersion-corrected DFT134,137 and fragment-
based hybrid quantum classical methods138,139 have reported

that the two polymorphs are very close in energy. These
studies have also shown that the relative stability of Form I and
Form II depends on the choice of method and whether free
energy corrections are applied. Figure S6 in the Supporting
Information shows that PBE+MBD free energy at 300 K,
calculated using the quasi-harmonic approximation (QHA), as
described in ref 54., predicts Form I to be more stable than
Form II by 1.10 kJ/mol. For the energetic materials CL-20 and
DNI, putative low-energy, high-density structures are found,
with lattice energies2.69 kJ/mol above the predicted ε form of
CL-20 and 1.69 kJ/mol above the experimentally observed
form of DNI.

MACE-OFF Performance. In the following, we assess the
performance of MACE-OFF23(L) for geometry relaxation and
energy ranking by comparing the results with PBE+MBD,
which we treat as the ground truth for putative crystal
structures. Figure 7 shows the distributions of RMSD30 values
obtained by comparing the structures relaxed with MACE-
OFF23(L) to the structures relaxed with PBE+MBD, starting
from the same initial configuration. We consider structures as
matching if 30 molecules are overlaid and RMSD30 < 1 Å,
indicating that both methods produce similar relaxed
configurations. Only structures that match their DFT-relaxed

Figure 6. Energy as a function of density, calculated at the PBE+MBD level of theory for the six benchmark targets: (a) aspirin, (b) Target XXII,
(c) Target I, (d) HMX, (e) CL-20, and (f) DNI. Experimentally observed polymorphs are highlighted in color, and putative crystal structures are
shown in gray. The molecular structures are also shown.

Figure 7. RMSD30 histograms of the relaxed crystal structures obtained with the MACE-OFF23(L) model compared to those obtained with PBE
+MBD, starting from the same initial configuration, for (a) aspirin, (b) Target XXII, (c) Target I, (d) δ-HMX, (e) ε-CL-20, and (f) DNI. The
mean RMSD30 is indicated by a vertical dashed line and the match rate is also shown.
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counterparts based on the RMSD30 values are included in our
analysis. We use this as a metric for assessing how closely
MACE-OFF23(L) reproduces the PBE+MBD potential energy
surface (PES). If the PBE+MBD PES is reproduced well, then
we expect MACE-OFF23(L) to arrive at the same local
minimum structure. We note that in the ranking stage of the
7th CSP blind test, it was considered a failure if some of the
relaxed structures obtained with a certain method no longer
matched the initial structures provided by the CCDC.37 In
particular, with some of the MLIPs used therein, the
experimental structures of some of the targets could no longer
be matched. In contrast, relaxation failures did not occur with
any of the dispersion-inclusive DFT methods used therein (nor
with the AIMNet2 MLIPs).

There is significant variation in the relaxation performance
of MACE-OFF23(L) across targets. For aspirin and Target I,
the structures relaxed with MACE-OFF23(L) are largely in
excellent agreement with PBE+MBD. The RMSD30 histograms
peak around 0.2 Å and most structures have an RMSD30 below
0.3 Å. For aspirin, 17 mismatches occurred out of 127
structures, corresponding to 86.6% match rate. For Target I,
there were 8 mismatches out of 89 structures, resulting in a
91.0% match rate. For Target XXII, the relaxation performance
of MACE-OFF23(L) is somewhat worse. Its RMSD30
histogram peaks around 0.35 Å, with the majority of structures
possessing RMSD30 values below 0.6 Å. Target XXII also has a
somewhat lower match rate than aspirin and Target I, with 21
mismatches out of 106 structures amounting to 80.2%.

For the three energetic materials, the relaxation performance
of MACE-OFF23(L) is markedly worse. For δ-HMX, ε-CL-20,
and DNI, the RMSD30 distributions are broader, peak around
0.3−0.4 Å, and a significant number of structures have
RMSD30 values above 0.6 Å. The worse relaxation performance
also manifests in a significantly lower match rates for these
targets. For δ-HMX there were 34 mismatches out of 89
structures (61.8%), for ε-CL-20 there were 36 mismatches out
of 137 structures (73.7%), and for DNI there were 50
mismatches out of 116 structures (56.9%). Across all targets,
we observe a weak correlation between the relaxation
performance and the relative lattice energies, where more

stable structures tend to have lower RMSD30 values, as shown
in the SI.

In Figure 8, the performance of MACE-OFF23(L) in
stability ranking is assessed by comparing the relative lattice
energies of structures relaxed with MACE-OFF23(L) against
those relaxed with PBE+MBD, which serve as the reference.
For aspirin and Target I, MACE-OFF23(L) performs well.
The MAE and RMSE values are below 5 kJ/mol and the
Kendall ranking correlation score is above 0.7. It is also
apparent in Figure 8a,c that the data points are concentrated
quite close to the parity line. For both of these targets, MACE-
OFF23(L) ranks the experimentally observed structures as the
lowest in energy. For Target XXII, ε-CL-20, and DNI the
performance of MACE-OFF23(L) is significantly worse, with
MAE and RMSE values ranging between 9 and 13 kJ/mol and
Kendall ranking correlation scores of 0.5−0.6. It is also evident
in Figure 8b,e,f that the data points are scattered farther away
from the parity line compared to aspirin and Target I. The
worst performance is found for δ-HMX with MAE and RMSE
values above 20 kJ/mol and a Kendall ranking correlation score
below 0.4. For Target XXII, the experimental structure is
ranked as #2 in agreement with PBE+MBD. For the three
energetic materials the experimental structures are ranked
quite poorly by MACE-OFF23(L), as #12 for δ-HMX, #8 for
ε-CL-20, and #19 for DNI. Similar performance trends are also
evident from the comparison of the relative energy vs density
landscapes obtained with MACE-OFF23(L) to PBE+MBD,
shown in the SI.

The variable performance of MACE-OFF23(L) can be
attributed to the similarities and differences between our target
molecules and the compounds contained in the SPICE training
data set. The SPICE 1.0 data set mainly comprises drug-like
molecules. This explains the good performance of the MACE-
OFF23(L) model for the pharmaceutical target, aspirin, and
Target I. The chemistry of Target XXII and, to a greater extent,
the energetic molecules is very different from typical
pharmaceutical compounds. Energetic materials, which feature
a high concentration of nitrogen-containing groups, are
underrepresented in the SPICE data set. Our findings are in
agreement with a recent study,140 which also reported poor
performance of MACE-OFF23(L) for molecules whose

Figure 8. Relative lattice energies ΔElatt obtained with the MACE-OFF23(L) model, compared to those calculated using PBE+MBD for (a) aspirin,
(b) Target XXII, (c) Target I, (d) δ-HMX, (e) ε-CL-20, and (f) DNI. The experimentally observed structures are indicated in color. The mean
absolute error (MAE), root mean squared error (RMSE), and Kendall correlation score are also shown.
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chemistry differs from the SPICE data set, including Target
XXII. These results highlight the limitations in the trans-
ferability of the MACE-OFF MLIPs across chemically diverse
compounds.

If the out-of-the-box performance of a general-purpose
MLIP is inadequate for a compound of interest, it is possible to
train a system-specific AIMNet2 model.89 To demonstrate this,
a system-specific AIMNet2 potential was trained for CL-20, as
described in the SI. Figure S4 shows that the system-specific
AIMNet2 potential delivers better relaxation performance than
MACE-OFF23(L), as evidenced by the higher match rate and
lower RMSD30 with respect to PBE+MBD. Figure S5 shows
that AIMNet2 provides better performance than MACE-
OFF23(L) for relative energy ranking, as indicated by a lower
relative energy MAE and a higher Kendall ranking correlation
with respect to PBE+MBD. Notably, AIMNet2 significantly
improves the relative energy and ranking of the experimental
structure, which is ranked as #4 with a relative energy of 2.50
kJ/mol above the global minimum. The system-specific
AIMNet2 model could be improved even further with
additional training using active learning to select the most
informative configurations.89

The clustering and down-selection workflow used here can
mitigate to some extent the limitations of MACE-OFF23(L),
as illustrated in Figure 9 for DNI. Figure 9a shows the

landscape of relative energy as a function of density obtained
after relaxation with MACE-OFF23(L) and duplicate removal
(step 5 in Figure S12). The best match to the experimental
structure (colored in red) is ranked as #79, 19.3 kJ/mol above
the MACE-OFF23(L) lowest-energy structure. Single-point
energy calculations using PBE+MBD on the MACE-OFF23-
(L) relaxed structures reveal significant changes in the relative

energy ranking, as shown in Figure 9b. The experimental
structure becomes the global minimum and the MACE-
OFF23(L) lowest-energy structure (colored in blue) is 21.13
kJ/mol higher in energy. This highlights that inaccuracies in
the MACE-OFF23(L) energy ranking could potentially lead to
the loss of important structures in the early stages of
hierarchical CSP workflows that employ energy cutoffs to
pass structures from one stage to the next. Here, the
experimental structure is retained thanks to our clustering
and down-selection approach. Figure 9c shows the MACE-
OFF23(L) relative energy as a function of density for the
cluster that contains the experimental structure after the AP
clustering step. The experimental structure is ranked second in
its cluster, after the structure colored in green. Because our
procedure is to select up to 5 structures within a 10 kJ/mol
window, rather than selecting only the most stable structure
out of each cluster, the experimental structure is retained,
despite the limitations of MACE-OFF23(L). This selection
method enhances the robustness of our down-selection
workflow. Similar analysis for all other targets is provided in
the SI, showing that the clustering and down-selection
procedure is particularly beneficial for the other two energetic
targets δ-HMX and ε-CL-20, whose experimental structures
are poorly ranked by MACE-OFF23(L).

■ CONCLUSION
In summary, we have presented a new version of our open-
source molecular crystal structure generator, Genarris 3.0. In
this version, we have implemented the Rigid Press algorithm,
which efficiently generates close-packed molecular crystal
structures by using a regularized hard-sphere potential to
compress the unit cell, while preserving the space group
symmetries. In addition, we have interfaced Genarris 3.0
through ASE with a variety of methods for geometry relaxation
and energy evaluation, including DFT and MLIPs, offering the
user maximal flexibility. We have introduced a new CSP
workflow of clustering and down-selection to gradually reduce
the number of structures evaluated with increasingly accurate
and more computationally expensive methods. For demon-
stration purposes, we employed the MACE-OFF general-
purpose MLIPs in the early stages of the workflow.

Genarris 3.0 successfully generated the experimentally
observed crystal structures of the pharmaceutical aspirin, the
two past blind test targets, Target I and Target XXII, and the
three energetic materials δ-HMX, ε-CL-20, and DNI. The best
matched structures were retained throughout the clustering
and down-selection workflow. MACE-OFF23(L) delivered
variable performance for relaxation and energy ranking across
chemically diverse compounds. The performance for Target
XXII and the energetic materials, whose chemistry is not well-
represented in the SPICE 1.0 data set, was worse than for
aspirin and Target I. This has highlighted some limitations in
the transferability of general-purpose MLIPs. We have
demonstrated that our clustering and down-selection workflow
was able to mitigate the inaccuracy of MACE-OFF23(L),
especially for the energetic materials, whose experimental
structures were significantly misranked.

Our results emphasize that although general-purpose MLIPs,
such as MACE-OFF, can considerably accelerate early stage
CSP workflows, dispersion-inclusive DFT remains indispen-
sable for accurate final ranking. Based on our findings, we
suggest exercising caution when using general-purpose MLIPs
for CSP. We recommend careful validation of the performance

Figure 9. Clustering and down-selection workflow for DNI: (a)
relative lattice energies computed using MACE-OFF23(L) as a
function of crystal density after relaxation with MACE-OFF23(L).
The experimental structure (red), the MACE-OFF23(L) lowest-
energy structure (blue), and the lowest-energy structure in the cluster
containing the experimental structure (green) are highlighted. (b)
Comparison of relative lattice energies computed with MACE-
OFF23(L) and PBE+MBD for the three structures, which are also
shown. The PBE+MBD calculations were performed on the structures
relaxed with MACE-OFF23(L). (c) MACE-OFF23(L) relative
energy as a function of crystal density for the cluster containing the
experimental structure. The orange dashed line indicates the 10 kJ/
mol energy threshold.
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of general-purpose MLIPs on a case-by-case basis, especially if
the chemistry of the materials of interest is significantly
different than the materials represented in the training data. If
their out-of-the-box performance is inadequate for the
materials of interest, alternative solutions, such as system-
specific AIMNet2 potentials89 may be considered.

In conclusion, Genarris 3.0 is a versatile and robust open-
source code for molecular crystal structure generation.
Genarris 3.0 is able to generate structures in all space groups,
including with structures occupying special Wyckoff positions.
It offers the user maximal flexibility in the choice of method for
relaxations and energy evaluations and in the design of CSP
workflows. For flexible molecules, Genarris 3.0 may be started
with an ensemble of conformers, as we had previously
demonstrated within the 7th CSP blind test.89 Future
improvements include generating structures with more than
one molecule in the asymmetric unit. Genarris 3.0 may be used
to perform CSP by random sampling,116 to generate initial
structure pools for other CSP methods,141 and to generate data
sets for MLIP training.117

■ ASSOCIATED CONTENT

Data Availability Statement
Genarris 3.0 is available on GitHub (https://github.com/
Yi5817/Genarris) and through the Web site (https://
www.noamarom.com/software/genarris/) under the BSD-3-
Clause license. The putative structures relaxed with MACE-
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